Wednesday, August 10, 2011


How Computational Complexity Will Revolutionize Philosophy

The theory of computation has had a profound influence on philosophical thinking. But computational complexity theory is about to have an even bigger effect, argues one computer scientist.

Since the 1930s, the theory of computation has profoundly influenced philosophical thinking about topics such as the theory of the mind, the nature of mathematical knowledge and the prospect of machine intelligence. In fact, it's hard to think of an idea that has had a bigger impact on philosophy.

And yet there is an even bigger philosophical revolution waiting in the wings. The theory of computing is a philosophical minnow compared to the potential of another theory that is currently dominating thinking about computation.

At least, this is the view of Scott Aaronson, a computer scientist at the Massachusetts Institute of Technology. Today, he puts forward a persuasive argument that computational complexity theory will transform philosophical thinking about a range of topics such as the nature of mathematical knowledge, the foundations of quantum mechanics and the problem of artificial intelligence.

Computational complexity theory is concerned with the question of how the resources needed to solve a problem scale with some measure of the problem size, call it n. There are essentially two answers. Either the problem scales reasonably slowly, like n, n^2 or some other polynomial function of n. Or it scales unreasonably quickly, like 2^n, 10000^n or some other exponential function of n.

So while the theory of computing can tell us whether something is computable or not, computational complexity theory tells us whether it can be achieved in a few seconds or whether it'll take longer than the lifetime of the Universe.

That's hugely significant. As Aaronson puts it: "Think, for example, of the difference between reading a 400-page book and reading every possible such book, or between writing down a thousand-digit number and counting to that number."

He goes on to say that it's easy to imagine that once we know whether something is computable or not, the problem of how long it takes is merely one of engineering rather than philosophy. But he then goes on to show how the ideas behind computational complexity can extend philosophical thinking in many areas.

Take the problem of artificial intelligence and the question of whether computers can ever think like humans. Roger Penrose famously argues that they can't in his book The Emperor's New Mind. He says that whatever a computer can do using fixed formal rules, it will never be able to 'see' the consistency of its own rules. Humans, on the other hand, can see this consistency.

One way to measure the difference between a human and computer is with a Turing test. The idea is that if we cannot tell the difference between the responses given by a computer and a human, then there is no measurable difference.

But imagine a computer that records all conversations it hears between humans. Over time, this computer will build up a considerable database that it can use to make conversation. If it is asked a question, it looks up the question in its database and reproduces the answer given by a real human.

Source: http://goo.gl/CE0tc



Global Source and/or and/or more resources and/or read more: http://goo.gl/JujXk ─ Publisher and/or Author and/or Managing Editor:__Andres Agostini ─ @Futuretronium at Twitter! Futuretronium Book at http://goo.gl/JujXk