QUANTA

Tuesday, April 12, 2011


IBM shows smallest, fastest graphene processor

By Agam Shah

IDG News Service - IBM on Thursday demonstrated its fastest graphene transistor, which can execute 155 billion cycles per second, which is about 50% faster than previous experimental transistors shown by the company's researchers.

The transistor has a cut-off frequency of 155GHz, making it faster and more capable than the 100GHz graphene transistor shown by IBM in February last year, said Yu-Ming Lin, an IBM researcher.

The research also shows that high-performance, graphene-based transistors can be produced at low cost using standard semiconductor manufacturing processes, Lin said. That could pave the way for commercial production of graphene chips, though Lin could not say when manufacturing of such chips would begin.

Commercialized graphene transistors will provide a performance boost in applications related to wireless communications, networking, radar and imaging, said Phaedon Avouris, an IBM fellow. Graphene is a single-atom-thick layer of carbon atoms structured in a hexagonal honeycomb form.

The transistor was developed as part of research IBM is conducting for the U.S. Department of Defense's DARPA (Defense Advanced Research Projects Agency) program to develop high-performance RF (radio frequency) transistors. Avouris said the military has considerable interest in graphene transistors.

The flow of electrons is faster on graphene transistors than conventional transistors, which enables faster data transfers between chips, Lin said. That makes it promising technology for applications such as networking that require communications at fast speeds and high frequencies.

Graphene transistors may be able compute faster than conventional transistors, but are not ideal for PCs yet, Lin said. Because of the lack of energy gap in natural graphene, graphene transistors do not possess the on-off ratio required for digital switching operations, which makes conventional processors better at processing discrete digital signals.

By contrast, the continuous energy flow makes graphene better at processing analog signals, Lin said. Graphene's high electron speed allows for faster processing of applications in analog electronics where such a high on-off ratio is not needed.

The graphene transistor benefited from the use of a new and improved substrate IBM called "diamond-like carbon." The graphene transistor exhibited excellent temperature stability from room temperature down to minus 268 degrees Celsius, which the company called "helium temperature."

"The performance of these graphene devices exhibited excellent temperature stability ... a behavior that largely benefited from the use of a novel substrate of diamond-like carbon," IBM said.

The graphene transistor is also IBM's smallest transistor to date, researchers said. The gate length of the radio-frequency graphene transistor was scaled down from 550 nanometers to 40 nanometers, compared to the gate length of 240 nanometers for the graphene transistor shown last year, which used a silicon carbide substrate.


Source and/or read more: http://goo.gl/VJ5iB

Publisher and/or Author and/or Managing Editor:__Andres Agostini ─ @Futuretronium at Twitter! Futuretronium Book at http://3.ly/rECc